A Novel Series of Transition-metal Chelates of Diphenylphosphinothioylthiourea Anion

By IWAO OJIMA, TOSCHITAKE IWAMOTO, TAKAHARU ONISHI, NAOKI INAMOTO,* and KENZI TAMARU (Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo, Japan)

Summary Two thiourea derivatives, 3-(diphenylphosphinothioyl)-1-phenylthiourea and 3-(diphenylphosphinothioyl)-1,1-diethylthiourea, behave as bidentate ligands towards Ni^{II} and Pd^{II} to produce new square-planar complexes, while the latter ligand gives a tetrahedral complex with Co^{II}.

THE thiourea derivatives, 3-(diphenylphosphinothioyl)-1phenylthiourea(PTTU-A) and 3-(diphenylphosphinothioyl)-1,1-diethylthiourea(PTTU-B), obtained by addition of diphenylphosphinothioyl isothiocyanate with aniline and diethylamine, respectively, react with bivalent metal halides to give a series of novel metal chelates.

A solution of PTTU-B (4 mmoles) in dichloromethane (20 ml.) was allowed to react with nickel(II) chloride hexahydrate (2 mmoles) in ethanol at room temperature. The precipitate thus formed was recrystallized from dichloromethane-ethanol solution. A crystalline bis-[3-(diphenylphosphinothioyl)-1,1-diethylthioureato]nickel(II) (Ni-PTTU-B) was obtained in nearly quantitative yield. The Ni^{II} and Pd^{II} complexes of PTTU-A and the Pd^{II} and Co^{II} complexes of PTTU-B were prepared in a similar way. Ni-PTTU-A: dark green needles, m.p. 193° (dec.), λ_{max} (CH_2Cl_2) 15.7 (log ϵ 2.36), 18.0 kk(2.30). Pd-PTTU-A: orange-yellow prisms, m.p. 215° (dec.). Ni-PTTU-B: dark green needles, m.p. 200° (dec.), λ_{max} (CH₂Cl₂) 15.5(2.24) and 17.6 kk(2.24). Pd-PTTU-B: pale-yellow prisms, m.p. 244° (dec.). Co-PTTU-B: bright green needles, m.p. 205—206°, $\chi_g = 11.9$ c.g.s. e.m.u. (room temp.), λ_{max} (CH₂Cl₂) 4.65 (1.50), 7.87(2.41), 14.3(2.57), and 15.7 kk(2.54).

The elemental analyses for these complexes were in good agreement with calculated values. All these complexes have the same metal: ligand ratio (1:2). Their solubilities in benzene were not high enough for us to determine their molecular weights except for the case of Co-PTTU-B,

M (found) 751; calc. for monomer: 753. Except for Co-PTTU-B, they are all diamagnetic at room temperature, which suggests that the complexes of Ni^{II} and Pd^{II} have square-planar configurations. Their crystal structures appear to be isomorphous according to the powder X-ray diffraction patterns.

The effective magnetic moment of Co-PTTU-B, $\mu_{eff.}$ =4.50 B.M., corresponds to the high-spin state of d^7 Co^{II} in a tetrahedral configuration. Its powder X-ray diffraction pattern was quite different from those of Ni- and Pd-PTTU-B. The electronic spectrum also supported the tetrahedral configuration of Co^{Π} in Co-PTTU-B. The values of B (684 cm.⁻¹) and 10 Dq (4788 cm.⁻¹) calculated on the basis of the Tanabe-Sugano diagram, are in reasonable agreement with those reported on several tetrahedral $\mathrm{Co}^{\mathrm{II}}$ complexes.¹ Cobalt(II) in Co-PTTU-B has a tetrahedral configuration, in contrast with the case of bis(dithioacetylacetonato)cobalt(11), which has a square-planar structure.²

In the i.r. spectra of the chelates with the square-planar

structure, two metal-sulphur stretching vibrations were expected to appear in the far-i.r. region.³ The bands most sensitive to metals, appearing in the region 420-320 cm.-1, are tentatively assigned to these vibrations in view of the covalent nature of the metal-sulphur bond and the mass

Characteristic bands in the far-i.r. spectra (cm.⁻¹)

			P=S	M-S(1)	M-S(2)
Ni-PTTU-A	••		584	417	358
Pd-PTTU-A	••	••	582	412	336
Ni-PTTU-B		• •	580	391	340
Pd-PTTU-B	••	••	579	380	329

effect (Table). The tentative assignments of P=S stretching bands are also given in the Table.

We thank Professor Ichiro Nakagawa for his advice and discussion on the i.r. spectroscopic results.

(Received, October 20th, 1969; Com. 1590.)

¹ A. B. P. Lever, "Inorganic Electronic Spectroscopy," Elsevier, Amsterdam, 1968, pp. 322-328.
² R. Beckett and B. F. Hoskins, *Chem. Comm.*, 1967, 909.
³ M. Mikami, I. Nakagawa, and T. Shimanouchi, *Spectrochim. Acta*, 1967, 23, A, 1037; K. Nakamoto, J. Fujita, R. A. Condrate, and N. Mikami, I. Nakagawa, and T. Shimanouchi, *Spectrochim. Acta*, 1967, 23, A, 1037; K. Nakamoto, J. Fujita, R. A. Condrate, and M. Mikami, I. Nakagawa, and T. Shimanouchi, *Spectrochim. Acta*, 1967, 23, A, 1037; K. Nakamoto, J. Fujita, R. A. Condrate, and M. Mikami, I. Nakagawa, and T. Shimanouchi, *Spectrochim. Acta*, 1967, 23, A, 1037; K. Nakamoto, J. Fujita, R. A. Condrate, and M. Mikami, J. Shimanouchi, *Spectrochim. Acta*, 1967, 23, A, 1037; K. Nakamoto, J. Fujita, R. A. Condrate, and M. Mikami, J. Shimanouchi, Spectrochim. Acta, 1967, 23, A, 1037; K. Nakamoto, J. Fujita, R. A. Condrate, and M. Mikami, J. Shimanouchi, Spectrochim. Acta, 1967, 23, A, 1037; K. Nakamoto, J. Fujita, R. A. Condrate, and M. Mikami, J. Shimanouchi, Spectrochim. Acta, 1967, 23, A, 1037; K. Nakamoto, J. Fujita, R. A. Condrate, and M. Mikami, J. Shimanouchi, Spectrochim. Acta, 1967, 23, A, 1037; K. Nakamoto, J. Fujita, R. A. Condrate, and M. Mikami, J. Shimanouchi, Spectrochim. Acta, 1967, 23, A, 1037; K. Nakamoto, J. Fujita, R. A. Condrate, and M. Mikami, J. Shimanouchi, Spectrochim. Acta, 1967, 23, A, 1037; K. Nakamoto, J. Fujita, R. A. Condrate, and M. Mikami, J. Shimanouchi, Spectrochim. Acta, 1967, 20, 1967, 20 Y. Morimoto, J. Chem. Phys., 1963, 39, 423.